### Semantic Information Push for Cultural Heritage Applications

#### Assist. Prof. Christos Tryfonopoulos University of the Peloponnese, Tripoli, Greece

#### Talk outline



- Introduction & motivation
- (Semantic) Information push
  - background
  - usefulness to Cultural Heritage
- Our approach
  - overview
  - experimental results
- Future work



# **Semantic Web for Cultural Heritage**

- Semantic Web (SW) has found a new fascinating field:
  - annotation
  - integration
  - linking

of Cultural Heritage (CH) data

- CH data on the other hand are typically:
  - (physically) distributed
  - (continuously) evolving
  - (inherently) diverse
  - i.e., difficult to handle/exploit!







#### Who uses this data? (1/2)

- Pretty much everybody in the loop!
  - all stakeholders ranging from:
    - the simple museum visitor to
    - the humanities researcher to
    - the data scientist...
- Museum visitors
  - increasingly more demanding in their museum experience
  - varied in needs (e.g., targeted/ exploratory/... visit)
  - personalisation is of paramount importance!







SW4CH@ESWC 2018, Crete, Greece

4/23

**Christos Tryfonopoulos** 

#### Who uses this data? (2/2)

- Humanities researchers
  - not satisfied with "static" data manipulations any more!
  - interested in emerging views (e.g., new facets/interpretations/ stories/...) or
  - aim at patterns in CH data
- Data/IT scientists
  - aim at more practical data qualities
    - accuracy (moderation)
    - richness (integration)
  - need appropriate tools









SW4CH@ESWC 2018, Crete, Greece

#### **Technological cross-cuts**



But what is the common technological factor that cross-cuts the desires of CH stakeholders?

# Knowledge bases/graphs!

- For the museum visitor the key lies in
  - the appropriate *exploitation* of the knowledge base
  - i.e., timely (aka in real-time) identify the proper (and relevant) data
- For the humanities researcher the key lies in
  - the appropriate *evolution monitoring* of the knowledge base
  - i.e., monitor data for new/interesting patterns
- For the data/IT scientist the key lies in
  - the appropriate *curation* of the knowledge base
  - i.e., overview the stream of changes using appropriate tools



# Key idea



- Propose a technological solution that
  - accounts for the dynamicity, vastness and heterogeneity of the knowledge bases/graphs at hand
  - is able to address all functional requirements in a unifying way
  - enrich the technological arsenal of CH by providing a fundamental building block for a series of applications
- (Semantic) Information push may play this role!
  - publish/subscribe
  - information alert
  - information dissemination
  - information filtering





...

SW4CH@ESWC 2018, Crete, Greece

# Information push in a nutshell



First generation information push systems

- channel-based (aka group-based)
  - a set of groups designated by the system
  - each event published to one such group
  - user subscribes to one or more groups of interest
     → think of mailing lists or IP multicast
- topic-based (aka subject-based)
  - (a bit) more flexible
  - each event is tagged with a subject (from a vocabulary or arbitrary)
  - user subscribes by specifying the subject (and operations \*,?,v,∧,...)
- fast, simple to implement but ...
  - no flexibility, cognitive overload







#### Information push in a nutshell



Second generation alerting systems

- content-based (our case)
  - rich data/query models
  - index queries, match against events/updates
  - matching is
    - complicated (specialised data structures, algorithms)
    - expensive (time, computational effort)
- Applications
  - news dissemination
  - digital libraries
  - electronic marketplaces / stock market updates
  - but not applied in a CH domain before!







- We have to deal both with text and structure!
- We have to do it real-time for bursty updates!

 $\rightarrow$  expressiveness

 $\rightarrow$  efficiency



SW4CH@ESWC 2018, Crete, Greece

# So, how is this of benefit to CH stakeholders?



Information push for end users:

- Angela is a museum visitor and WWII aficionado
  - explicit (active) profile creation for interests
    - e.g., poetry, WWII, art
  - implicit profile augmentation on user interactions
    - visited sites/reads, context (e.g., location, device type)



- Receives notifications on events of interest, e.g.,
  - a WWII antique fair as she passes nearby (LBS)
  - a connection of a museum artifact to the bombing of Nagasaki
  - a new interpretation of H. Goldbaum's "In the Shadow of Great Times" poem



# So, how is this of benefit to CH stakeholders?



Information push for humanities researchers:

- Amalia is a majoring in the history of History of Art
  - regularly searches relevant online resources (e.g., SemScholar or MSA)
  - mainly interested in
    - retrieving scientific publication in the relevant domain
    - following prominent works in the area
  - has to deal with field particularities
- Receives notifications on events of interest, e.g.,
  - on long-term information needs
    - new papers
    - interpretations of existing art pieces
    - art reviews of prolific authors are published





SW4CH@ESWC 2018, Crete, Greece

# So, how is this of benefit to CH stakeholders?

Information push for data/IT scientists:

- Nikki is a computer scientist working on CH ontology maintenance
  - resorts both to automated and crowdsourced methods
  - occasionally needs to integrate with new resources
  - aims at both quality and quantity of the knowledge base
- Receives notifications on events of interest, e.g.,
  - spurious or unusual connections in the knowledge base
    - e.g., mistakenly linking a painting to an oratorio composer as opposed to his namesake painter
  - trending items (e.g., receiving many upvotes)
  - creation/evolution of certain patterns/subgraphs (e.g., clique patterns shared between different artifacts)







# **Our approach**



- Expressive continuous (SPARQL) queries with
  - textual constraints
    - Boolean expressions over keywords
    - word proximity/phrases
  - structural (graph) constraints
    - predefined (chains, stars, cycles, cliques)
    - ... arbitrary(sub)graph patterns
- Over vast, evolving graphs  $\rightarrow$  graph streams
  - edge/node additions
  - edge/node removals
  - attribute/label updates (attribute graphs)
- Matching constraints produce appropriate notifications!



SW4CH@ESWC 2018, Crete, Greece



#### **Our Contribution (1/2)**



Extend SPARQL with textual information push Boolean, word proximity, phrase operators **SELECT** ?event WHERE {?event type Artifact ?publication title ?title. ?publication description ?descr FILTER contains(?title, "alexander" NEAR<sub>[0,1]</sub> great") FILTER contains(?descr, "doctor (AND)"friendship ("OR "trust"))}



# **Our Contribution (2/2)**



- Algorithm STIP (Structural and Textual Information Push)
  - inverted index to accommodate both
    - structural constraints and
    - textual constraints
  - unified structure
  - emphasis on efficiency
- Identify the tradeoff between:
  - expressiveness and
  - efficiency



 Note that we want this to be a lower-level building block for CH → keep it as generic as possible!



SW4CH@ESWC 2018, Crete, Greece

#### **Obvious solution: Brute Force**

В

 $w \wedge z$ 

С

А

Query 1

В

С

"x y z"

Е

Α

D

Query 3



- No index on the cont. queries...
- Sequentially evaluate them against every graph update!
- Perfect to motivate info push...

| Query<br>ID | Constraints                   |
|-------------|-------------------------------|
| 1           | AB, AC, B: w, B: z,<br>C: xyz |
| 2           | AB, BC, CA                    |
| 3           | AB, AC, EA, DA                |

Query 2

Α

В

SW4CH@ESWC 2018, Crete, Greece

С

#### **Obvious solution: Brute Force**

В

 $w \wedge z$ 

С

А

Query 1

В

С

"x y z"

Е

Α

D

Query 3



- No index on the cont. queries...
- Sequentially evaluate them against every graph update!
- Perfect to motivate info push...

| Query<br>ID | Constraints                   |
|-------------|-------------------------------|
| 1           | AB, AC, B: w, B: z,<br>C: xyz |
| 2           | AB, BC, CA                    |
| 3           | AB, AC, EA, DA                |

Control - Contro

Query 2

Α

В

SW4CH@ESWC 2018, Crete, Greece

С

#### **Proposed solution: STIP**

А

Query 1

В

С

"x y z"

Е

Α

D

Query 3

С

В

 $w \wedge z$ 

С





Post-process potential matches

| Key    | Query IDs |
|--------|-----------|
| CA     | 2         |
| BD     | 1         |
| AC     | 1, 3      |
|        |           |
| C: xyz | 1         |
| AB     | 1, 2, 3   |

| Query ID | Total atomic<br>constraints | Matched atomic<br>constraints |
|----------|-----------------------------|-------------------------------|
| 1        | 5                           | 2                             |
| 2        | 3                           | 3                             |
| 3        | 4                           | 0                             |



Query 2

А

В

SW4CH@ESWC 2018, Crete, Greece

19/23

**Christos Tryfonopoulos** 

### **Experimental evaluation**



- Data set
  - 1M timestamped DBpedia triples
  - added to an initially empty graph as publications/events
  - end result: a graph with 1.2M vertices
- Continuous query set
  - artificially created
    - matching: extracted from final graph
    - non-matching: random
  - equiprobably chosen to be chains/stars/cycles/arbitrary graphs
  - 10% had also a textual constraint
- Baselines
  - query DB: 10/30/50K queries, query length: 4/5/6 atomic constraints, query selectivity: 5,10,15%



# **Key findings**



- STIP four orders of magnitude faster in filtering than Brute Force
  - ~2M updates/sec on a commodity PC (but is this enough?)
  - deals effectively with bursts
- STIP insensitive to
  - graph size (since evaluation is per update!)
  - continuous query length
  - continuous query selectivity
- Results are
  - preliminary
  - but ... highly promising





SW4CH@ESWC 2018, Crete, Greece

21/23

**Christos Tryfonopoulos** 

#### **Future focus**



- Expressiveness
  - add vector space queries (non-trivial: window or thresholding? how?)
  - add more query classes (without much performance compromise)
    - shortest path queries (critical to unveil interesting connections)
    - clustering coefficient queries
    - ...
- Efficiency
  - further exploit query commonalities
    - e.g., tree structures, automata
  - devise parallelisation
    - e.g, exploit multi-core or cluster environments
- Deployment
  - provide a query store and the accompanying event filtering engine



#### Thank you...



... for your attention!

And thanks to L. Zervakis for his help with the experimental part!

# Questions?

For more info: <u>www.uop.gr/~trifon</u> and <u>soda.dit.uop.gr</u>

- Information push [TKDE'17, DEBS'15, TLDKS'14, TOIS'09, TKDE'06, SIGIR'04, SIGMOD Record'03, ECDL'02]
- Semantic Information Management [ESWC'16, K-CAP'15, EDBT'14, ESWC'12, ISWC'11]
- Digital libraries
   [JCDL'09, ECDL'08,'07,'05, DELOS'07]
- Distributed data/information management
   [AAMAS15, ECIR13, Coopis13 & 11, DAPD09, Int. Comp.07, WISE08, SIGIR05 & 08, P2P08, ICDE06, SIGMOD04, EDBT04]
- Security/privacy/anonymisation (of users or data) [SIGIR'16, Medical Data Privacy Book '15, EDBT'14, CoopIS'09, PODC'08]



SW4CH@ESWC 2018, Crete, Greece